of organic and inorganic entities of the *ABABA*... type of packing. Intermolecular interactions are observed through short S…S (≤ 3.60 Å) and S…O (≤ 3.20 Å) contacts (see Fig. 2).

References

- ALLCOCK, H. R., BISSELL, E. C. & SHAWL, E. T. (1973). Inorg. Chem. 12, 2963–2968.
- B. A. FRENZ & ASSOCIATES, INC. (1985). SDP Structure Determination Package. College Station, Texas, USA.
- CHE, M., FOURNIER, M. & LAUNAY, J. P. (1979). J. Chem. Phys. 71, 1954–1960.
- KOBAYASHI, H., KOBAYASHI, A., SASAKI, Y., SAITO, G. & INOKUCHI, H. (1986). Bull. Chem. Soc. Jpn, 59, 301–302.

LINDQUIST, I. (1953). Ark. Kemi, 5, 247-250.

- MALLAH, T., HOLLIS, C., BOTT, S., KURMOO, M., DAY, P., ALLAN, M. & FRIEND, R. H. (1990). J. Chem. Soc. Dalton Trans. 3, pp 859-865.
- OUAHAB, L., BENCHARIF, M. & GRANDJEAN, D. (1988). C. R. Acad. Sci. Paris Sér. 2, 307, 749–751.
- SANCHEZ, C., LIVAGE, J., LAUNAY, J. P. & FOURNIER, M. (1983). J. Am. Chem. Soc. 105, 6817–6823.
- SHIBAEVA, R. P., LOBKOVSKAYA, R. M., KOROTKOV, V. E., KUSHCH, N. D., YAGUBSKII, E. B. & MAKOVA, M. K. (1988). Synth. Met. 27, A457-A463.
- TRIKI, S., OUAHAB, L., PADIOU, J. & GRANDJEAN, D. (1989). J. Chem. Soc. Chem. Commun. pp. 1068–1070.
- URAYAMA, H., YAMOCHI, H., SAITO, G., SATO, S., KAWAMOTO, A., TANAKA, J., MORI, T., MURUYAMA, Y. & INOKUCHI, H. (1987). *Chem. Lett.* pp. 55–59.
- WALKER, N. & STUART, D. (1983). Acta Cryst. A39, 158-166.

Acta Cryst. (1991). C47, 648-650

$[(C_5Me_5)(Et_2NCS_2)Rh(\mu-Ph_2PCH_2CH_2PPh_2)Rh(Et_2NCS_2)(C_5Me_5)]^{2+}.2BPh_4^{-}$

BY ALEXANDER J. BLAKE,* JOHN D. FOTHERINGHAM AND T. A. STEPHENSON

Department of Chemistry, University of Edinburgh, West Mains Road, Edinburgh EH9 3JJ, Scotland

AND SUSAN G. HAMBLING AND LINDSAY SAWYER

Department of Biochemistry, University of Edinburgh, Hugh Robson Building, George Square, Edinburgh EH8 9XD, Scotland

(Received 24 April 1990; accepted 28 August 1990)

Abstract. $[\mu$ -Ethylenebis(diphenylphosphine)-1 κP :- $2\kappa P$]-bis[(N,N-diethyldithiocarbamato)(η^5 -pentamethylcyclopentadienyl)rhodium(III)] bis(tetraphenylborate), $[Rh_2(C_{10}H_{15})_2(C_5H_{10}NS_2)_2(C_{26}H_{24}P_2)]^{2+}$. $2C_{24}H_{20}B^-$, $M_r = 1809 \cdot 7$, orthorhombic, Pbca, a = $28 \cdot 497$ (9), $b = 19 \cdot 236$ (8), $c = 16 \cdot 700$ (9) Å, V =9154 Å³, Z = 4, $D_x = 1 \cdot 31$ Mg m⁻³, λ (Mo K α) = $0 \cdot 71073$ Å, $\mu = 0 \cdot 492$ mm⁻¹, F(000) = 3784, T =295 K, $R = 0 \cdot 0598$ for 5198 unique observed reflections. The dication is centrosymmetric, the two $[C_5Me_5Rh(S_2CNEt_2)]$ units being linked by a Ph_2PCH_2 —CH₂PPh₂ ligand whose midpoint lies on a crystallographic inversion centre.

Experimental. Title compound prepared by reaction of $[C_5Me_5Rh(S_2CNEt_2)Cl]$ with $Ph_2PCH_2CH_2PPh_2$ (dppe) in CH_2Cl_2 followed by the addition of NaBPh₄ in MeOH, crystals obtained by crystallization from MeOH. Orange sphenoid, $0.2 \times 0.3 \times$ 1.4 mm, mounted to rotate about c on Stoe STADI-2 two-circle diffractometer, graphite-monochromated Mo K α radiation, cell parameters from nine *hk*0 and four 00*l* reflections. For data collection, ω scans with ω -scan width $(1.0 + 0.50\tan\theta)^\circ$, $2\theta_{\max} = 50^\circ$, $h \to 32$, $k \to 22$, $l \to 19$, no significant crystal movement or decay, 8127 reflections collected, 7936 unique ($R_{int} = 0.039$), giving 5198 with $F \ge 6\sigma(F)$ for

 $S(2) \bigoplus_{i=1}^{N} S(1) \bigoplus_{i=1}^{C(11)} O(16)$

Fig. 1. A general view of the dication showing atom-numbering scheme: H atoms have been removed for clarity. Thermal ellipsoids are drawn at the 30% probability level, except those of C atoms which have artificial radii of 0.15 Å. The dication is centrosymmetric; the midpoint of the CH₂—CH₂ bond in the dppe ligand lies on an inversion centre.

© 1991 International Union of Crystallography

^{*} Author for correspondence.

^{0108-2701/91/030648-03\$03.00}

Table 1. Atomic coordinates and isotropic thermal Table 2. Bond lengths (Å) and angles with e.s.d.'s in parentheses parameters $(Å^2)$ with e.s.d.'s in parentheses

	$U_{\rm eq} = \frac{1}{3}(U_{11} + U_{22} + U_{33}).$				Rh—S(1) Rh—S(2)	2·3493 (18) 2·3638 (18)	C(3)—C(8) C(4)—C(5)
	x	v	Z	U_{eq} or U_{iso}	Rh-C(1)	2.200 (6)	C(4)-C(9)
Ph	0.05308 (2)	0.18832 (2)	0-08300 (3)	0.0368 (3)	Rh—C(2)	2.179 (6)	C(5)-C(10)
S(1)	-0.02598(6)	0.18018(9)	0.12175(10)	0.0466(10)	Rh—C(3)	2.228 (7)	C(11)—N
S(2)	0.00819 (6)	0.21574(10)	-0.03176(9)	0.0490(10)	Rh—C(4)	2.201 (7)	N—C(12)
N (2)	-0.08274(18)	0.2304(3)	0.0075(3)	0.051 (4)	RhC(5)	2-189 (7)	NC(14)
Þ	0.05552 (6)	0.07250 (8)	0.04892 (9)	0.0356 (8)	Rh—P	2.3005 (17)	C(12)—C(13)
, cu	0.12733(22)	0.2041(3)	0.1142(4)	0.0427 (16)	S(1)—C(11)	1.720 (6)	C(14) - C(15)
C(2)	0.09923 (23)	0.2048(3)	0.1853 (4)	0.0466 (17)	S(2)—C(11)	1.704 (6)	PC(16)
C(3)	0.0698 (3)	0.2633(4)	0.1806 (4)	0.0593 (20)	C(1) - C(2)	1.432 (9)	P-C(17)
C(4)	0.0771(3)	0.2952 (4)	0.1061 (4)	0.0563 (19)	C(1)—C(5)	1.400 (9)	PC(23)
C(5)	0.11250 (24)	0.2587 (4)	0.0649 (4)	0.0485 (17)	C(1)—C(6)	1.488 (10)	BC(29)
C(6)	0.1680 (3)	0.1573 (4)	0.0998 (4)	0.0606 (20)	C(2)C(3)	1.404 (10)	B-C(35)
$\vec{C}(\vec{7})$	0.1065 (3)	0.1607 (4)	0.2579 (5)	0.0709 (22)	C(2) - C(7)	1.496 (10)	B-C(41)
C (8)	0.0358 (3)	0.2853 (5)	0.2455 (5)	0.083 (3)	C(3) - C(4)	1.403 (10)	B-C(4/)
C(9)	0.0534 (3)	0.3611 (4)	0.0763 (5)	0.086 (3)	C(16) - C(16')	1.5/0 (9)*	
C(10)	0.1337 (3)	0.2804 (4)	-0.0126 (5)	0.0733 (23)	Q(1) D1 Q(2)	72 (0 (6)	N C(12) C(12)
C(11)	-0.04009 (22)	0-2111 (3)	0.0282 (4)	0.0437 (16)	S(1) - Kn - S(2)	/3.09 (0)	N = C(12) = C(13)
C(12)	-0.1209 (3)	0.2291 (4)	0.0638 (4)	0.0631 (21)	S(1) - K n - P	91.07 (0)	$R_{}C(14)-C(15)$
C(13)	-0.1209 (3)	0.2950 (4)	0.1148 (5)	0.0654 (21)	$S(2) - K \Pi - P$	91.03 (0)	$R_{\rm h} = P_{\rm eff}(10)$
C(14)	- 0.0911 (3)	0.2625 (4)	- 0·0719 (4)	0.0676 (22)	Rn = S(1) = C(11)	87.07 (22)	Rh = P = C(23)
C(15)	-0.1032 (3)	0.2081 (4)	-0.1341 (5)	0.083 (3)	$K_{11} = S(2) = C(11)$	108.1 (5)	C(16) = P = C(17)
C(16)	0.00013 (22)	0.0397 (3)	0.0107 (4)	0.0435 (15)	C(2) - C(1) - C(3)	125.2 (6)	C(16) = P = C(23)
C(17)	0.06911 (14)	0.01780 (25)	0.1336 (3)	0.0432 (16)	C(2) - C(1) - C(0)	126.5 (6)	C(10) = C(23) C(17) = P = C(23)
C(18)	0.11481 (14)	-0.00409 (25)	0.1498 (3)	0.0557 (18)	C(1) - C(1) - C(3)	107.2 (6)	P - C(17) - C(18)
C(19)	0.12485 (14)	-0.03840 (25)	0.2214 (3)	0.0792 (25)	C(1) = C(2) = C(3)	126.1 (6)	P - C(17) - C(22)
C(20)	0.08918 (14)	-0.05082 (25)	0.2768 (3)	0.089 (3)	C(3) - C(2) - C(7)	125.6 (6)	P-C(23)-C(24)
C(21)	0.04349 (14)	-0.02893 (25)	0.2606 (3)	0.086 (3)	C(2) - C(3) - C(4)	108.1 (6)	P-C(23)-C(28)
C(22)	0.03345 (14)	0.00538 (25)	0.1890 (3)	0.0659 (21)	C(2) - C(3) - C(8)	124.5 (7)	C(29)—B—C(35)
C(24)	0.10825 (15)	0.10219 (17)	-0.0834 (3)	0.0514 (17)	C(4) - C(3) - C(8)	127.3 (7)	C(29)-BC(41)
C(25)	0.13860(15)	0.08/91 (17)	-0.1468 (3)	0.0670 (21)	C(3) - C(4) - C(5)	108.7 (6)	C(29)-B-C(47)
C(26)	0.15760 (15)	0.02150(17)	-0.1555 (3)	0.0723(23)	C(3) - C(4) - C(9)	126.2 (7)	C(35)-B-C(41)
C(27)	0.14624 (15)	-0.03063(17)	-0.1008 (3)	0.0624(20)	C(5) - C(4) - C(9)	125.0 (7)	C(35)-B-C(47)
C(28)	0.00689 (15)	-0.01033 (17)	-0.0373(3)	0.0343(18)	C(1) - C(5) - C(4)	107.7 (6)	C(41)-B-C(47)
C(23)	0.2006 (1)	0.05000(17)	- 0-0280 (3)	0.0453 (18)	C(1) - C(5) - C(10)	126.8 (6)	BC(29)C(30)
B C(20)	0.20070 (3)	0.4324(4)	0.5000 (3)	0.0444 (16)	C(4)-C(5)-C(10)	125.2 (6)	B-C(29)-C(34)
C(29)	0.29070 (10)	0.44581 (17)	0.4372(3)	0.0571(19)	S(1) - C(11) - S(2)	111-3 (4)	B-C(35)-C(36)
C(30)	0.27108 (16)	0.41173(17)	0.3691 (3)	0.0634(20)	S(1)-C(11)-N	123.5 (5)	B-C(35)-C(40)
C(31)	0.25748 (16)	0.34218(17)	0.3737(3)	0.0603 (19)	S(2)—C(11)—N	125-2 (5)	B-C(41)-C(42)
C(32)	0.26049 (16)	0.30671(17)	0.4464(3)	0.0578(19)	C(11)-N-C(12)	121.4 (6)	B-C(41)-C(46)
C(34)	0.27710(16)	0.34079(17)	0.5145 (3)	0.0474 (16)	C(11)—N—C(14)	120.0 (6)	B-C(47)-C(48)
C(35)	0.36838(15)	0.44813 (24)	0.59386 (20)	0.0471 (16)	C(12) - N - C(14)	118-1 (6)	BC(47)C(52)
C(36)	0.39298 (15)	0.43665 (24)	0.66485 (20)	0.0575 (19)	C(16) - P - C(16')	115∙0 (4)*	
C(37)	0.44180 (15)	0.43144 (24)	0.66362 (20)	0.0673 (21)	* C(16') ;	anarated from C	16) by inversion th
C(38)	0.46602 (15)	0.43772 (24)	0.59139 (20)	0.0709 (22)	C(10) h	s generated from C	TO) by inversion in
C(39)	0.44142 (15)	0.44920 (24)	0.52039 (20)	0.0666 (21)			
C(40)	0.39260 (15)	0.45441 (24)	0.52163 (20)	0.0512 (17)			
C(41)	0.29284 (16)	0.53430 (24)	0.5937 (3)	0.0448 (16)			
C(42)	0.24989 (16)	0.55342 (24)	0.5602 (3)	0.0670 (21)		01 11 1 1 10	
C(43)	0.23200 (16)	0.61996 (24)	0.5733 (3)	0.079 (3)	(SHELX/6;	Sneldrick, 19	(o) except to
C(44)	0.25705 (16)	0.66739 (24)	0.6198 (3)	0.0748 (23)	& Mann 10	968)	
C(45)	0.30000 (16)	0.64827 (24)	0.6533 (3)	0.0663 (21)		1.	· ·
C(46)	0.31790 (16)	0.58173 (24)	0.6402 (3)	0.0535 (18)	Atomic	coordinates	and equiva
C(47)	0.28678 (14)	0.41465 (22)	0.6745 (3)	0.0419 (15)	thermal pa	rumetere are	given in To
C(48)	0.30488 (14)	0.35184 (22)	0.7026 (3)	0.0584 (19)	mermai pa	ameters ale	Broom in Ia
C(49)	0.28521 (14)	0.32021 (22)	0.7699 (3)	0.0704 (22)	bond lengt	hs and angles	s appear in
C(50)	0.24744 (14)	0.35140 (22)	0.8090 (3)	0.0684 (21)	atom numb	ering scheme	for the mole
C(51)	0.22934 (14)	0.41421 (22)	0.7809 (3)	0.0606 (20)	atom-numo	ering scheme	tor the mole

0.0470 (16)

structure solution from a Patterson synthesis (Rh) followed by iterative cycles of least-squares refinement and difference Fourier synthesis and refinement using full-matrix least squares on F(SHELX76; Sheldrick, 1976). Anisotropic thermal parameters for Rh, S, P and N, H atoms in fixed, calculated positions or as part of rigid CH₃groups. At final convergence, R = 0.0598, wR =0.0736, S = 1.405 for 219 parameters, $(\Delta/\sigma)_{max}$ in final cycle 0.19, max. and min. residues in final ΔF synthesis 0.79, $-0.47 \text{ e} \text{ Å}^{-3}$. The weighting scheme $w^{-1} = \sigma^2(F) + 0.000307F^2$ gave satisfactory agreement analyses. Scattering factors were inlaid

0.44584 (22)

0.7137 (3)

0.24901 (14)

C(52)

through (0,0,0).

for Rh (Cromer

alent isotropic able 1, selected Table 2.* The lecule shown in Fig. 1 was generated using ORTEP (Mallinson & Muir, 1985). Molecular geometry calculations were performed using CALC (Gould & Taylor, 1985).

Related literature. ³¹P NMR spectra indicate that the initial product of the reaction with dppe is similar to that with dppm (Ph₂PCH₂PPh₂) in that it affords a mono-rhodium product with a 'dangling' -PPh₂ group available for further coordination (Blake, Fotheringham & Stephenson, 1991). However,

1.514 (12) 1·409 (10) 1·519 (12) 1.488 (11)

1.317 (8)

1.437 (9)

1 481 (10)

1.528 (11) 1.514 (12)

1.816 (6) 1.805 (5) 1.804 (4)

1.667 (9) 1.678 (9) 1.648 (9) 1.701 (9)

110.5 (6)

111-3 (6) 113.39 (21) 112-16 (16) 115-41 (15) 105.0 (3) 103.46 (24) 106.43 (20) 121.9 (3) 117.6 (3) 116-8 (3) 123-2 (3) 108.8 (5) 113.1 (5) 109.7 (5) 109·7 (5) 109·5 (5) 109·7 (5) 105·9 (5) 119·3 (4) 120.6 (4) 122.3 (4) 117.7 (4) 119·7 (4) 119·5 (4) 120·3 (4) 119.7 (4)

^{*} Lists of structure factors, anisotropic thermal parameters, torsion angles and H-atom parameters have been deposited with the British Library Document Supply Centre as Supplementary Publication No. SUP 53523 (37 pp.). Copies may be obtained through The Technical Editor, International Union of Crystallography, 5 Abbey Square, Chester CH1 2HU, England.

crystallization yields exclusively the dication with the bridging dppe as described here.

References

BLAKE, A. J., FOTHERINGHAM, J. D. & STEPHENSON, T. A. (1991). In preparation.

Acta Cryst. (1991). C47, 650-651

CROMER, D. T. & MANN, J. B. (1968). Acta Cryst. A24, 321-324. GOULD, R. O. & TAYLOR, P. (1985). CALC, Program for molecular geometry calculations. Univ. of Edinburgh, Scotland, MALLINSON, P. D. & MUIR, K. W. (1985). ORTEPII. Interactive version. J. Appl. Cryst. 18, 51-53.

SHELDRICK, G. M. (1976). SHELX76. Program for crystal structure refinement. Univ. of Cambridge, England.

A Vanadyl Complex of a Tetradentate Ligand Featuring a cis-N₂S₂ Donor Ligand Set

BY DANIEL FARCHIONE AND ANTHONY G. WEDD

Department of Chemistry, LaTrobe University, Bundoora, Victoria 3083, Australia

AND EDWARD R. T. TIEKINK

Jordan Laboratories, Department of Physical and Inorganic Chemistry, University of Adelaide, Adelaide, South Australia 5001, Australia

(Received 16 July 1990; accepted 20 August 1990)

Abstract. $[N, N'-Dimethy]-2, 2'-(ethylenediimino-\kappa^2-$ N,N')diethanethiolato- $\kappa^2 S,S'$]oxovanadium(IV), [VO- $(C_8H_{18}N_2S_2)$], $M_r = 273.3$, monoclinic, $P2_1/c$, a = $(0.311_{81}, 0.252_{71}), M_r = 27.53, \text{ monotenine}, T_{21}, 7, a = 7.620 (1), b = 12.702 (2), c = 12.782 (1) Å, \beta = 103.75 (1)^{\circ}, V = 1202 (1) Å^3, Z = 4, D_x = 1.510 \text{ Mg m}^{-3}, \text{ Mo } K\alpha, \lambda = 0.7107 Å, \mu = 1.074 \text{ mm}^{-1}, F(000) = 572, T = 293 (1) \text{ K}, R = 0.038$ for 1759 observed reflections. The V atom in $[VO(C_8H_{18}N_2S_2)]$ exists in a distorted squarepyramidal geometry with the square plane defined by a $cis-N_2S_2$ donor set provided by the dianion L^{2-} [where LH_2 is N, N'-dimethyl-2,2'-(ethylenediimino)diethanethiol]; V-N 2.151 (3), 2.164 (3); V—S 2·361 (1), 2·335 (1) Å. The V atom lies 0.6986(5) Å out of the N₂S₂ plane in the direction of the apical O atom $[V-O_1.596(2)]$ Ål.

Experimental. $[VO(acac)_2]$ (acac = acetylacetonate) and the free ligand, LH₂ (Wilson, Kony, Tiekink, Pilbrow, Spence & Wedd, 1988), were refluxed in methanol to produce a mixture of [V(acac)₃] and $[VO(C_8H_{18}N_2S_2)]$. Recrystallization from hot methanol produced a low yield (6%) of well formed crystals of [VO(C₈H₁₈N₂S₂)]. Enraf-Nonius CAD-4F diffractometer controlled by a PDP8/A computer. graphite-monochromated Mo $K\alpha$ radiation: $\omega:2\theta$ scan technique. Cell parameters by least squares on 25 reflections ($2 \le \theta \le 11^\circ$) (de Boer & Duisenberg, 1984) on a spherical crystal of 0.33 mm diameter: no absorption correction applied. 3447 reflections ($1.5 \leq$ $\theta \le 27.5^{\circ}$) measured in the range $-9 \le h \le 9$, $0 \le k$

0108-2701/91/030650-02\$03.00

 $\leq 16, -16 \leq l \leq 1$. No significant variation in the net intensities of three reflections (210, 020, 241) measured every 7200 s. 2762 unique reflections ($R_{int} 0.024$) and 1759 satisfied $I \ge 2.5\sigma(I)$. Structure solved by Patterson method. full-matrix least-squares refinement on 128 parameters based on F (Sheldrick, 1976). Anisotropic thermal parameters for non-H atoms and H atoms included at their calculated positions. Evidence of disorder in the structure is seen in the high thermal motion associated with the C(4) and C(5) atoms and the short C(4)—C(5)bond distance of 1.262 (7) Å. At convergence R =0.038, wR = 0.046, $w = 0.57/[\sigma^2(F) + 0.0015|F|^2]$, S = 0.96, $(\Delta/\sigma)_{\text{max}} \le 0.002$, $\Delta\rho_{\text{max}} = 0.40$, $\Delta\rho_{\text{min}} = -0.59 \text{ e} \text{ Å}^{-3}$; no extinction correction applied. Scat-

Table	1.	Atomic	coordinates	and	R	values	(Ų	١
1 4010	••	1100000	coorainaics	unu s	$\boldsymbol{\nu}_{ea}$	vuiues	(A	,

$B_{\rm eq} = (8\pi^2/3)$ trace U.

	x	У	Z	Bea
v	0.23878 (7)	0.16363 (4)	0.18823 (4)	2.46
S(1)	0.3692 (2)	0.3332 (1)	0.2013 (1)	4.48
S(2)	-0.0256 (1)	0.2247 (1)	0.0717 (1)	4.83
O(1)	0.3542 (4)	0.0900 (2)	0.1286 (2)	4.39
N(1)	0.3575 (4)	0.1602 (2)	0.3587 (2)	3.03
N(2)	0.0589 (4)	0.0526 (2)	0.2379 (2)	3.79
C(1)	0.4460 (6)	0.3401 (3)	0.3453 (3)	4.57
C(2)	0.3692 (5)	0.2681 (3)	0.4053 (3)	3.62
C(3)	0.5427 (7)	0.1166 (4)	0.3807 (4)	5.84
C(4)	0.2406 (10)	0.0958 (5)	0.4110 (3)	9.29
C(5)	0.1194 (9)	0.0383 (8)	0.3544 (4)	12.36
C(6)	0.0639 (8)	-0.0507 (4)	0.1835 (6)	8.31
C(7)	-0·1287 (6)	0.0910 (4)	0.2114 (4)	5.63
C(8)	-0.1864 (6)	0.1296 (5)	0.0992 (4)	6.40

© 1991 International Union of Crystallography